Aller au contenu principal
Afficher le fil d'ariane

LE PONT LEARNING : 4. Le développement d’applications Big Data et la Data visualisation

Organisme

LE PONT LEARNING
97 RUE ANATOLE FRANCE
92300 LEVALLOIS-PERRET
Voir toutes ses formationsAutres organismes proposant cette formation

Durée

21 heures

Modalités

Formation

  • Classe virtuelle
  • Présentiel

Évaluation

Auto-évaluation des acquis par le stagiaire via un questionnaire en ligne

Prix

Inter
La formation en Inter est dispensée pour un groupe de salariés d’entreprises différentes.
900€ HT / personne
Intra
La formation en Intra est dispensée pour un groupe de salariés d’une seule et même entreprise.
4500€ HT / groupe
4 stagiaires minimum

Public

Développeur, Business analyst, Consultant BI, Concepteur, chef de projet

Pré-requis

Connaître JAVA et les algorythmes

Objectifs pédagogiques

Pour consulter les objectifs pédagogiques, merci de vous référer au programme détaillé de chaque stage.

Programme détaillé

Panorama technologique et enjeux socio-économiques

  • Bâtir une vision Data Centric pour l'entreprise
  • Etudier l'environnement concurrentiel de l'entreprise
  • Comment créer de la valeur ou apporter de la valeur complémentaire aux données
  • Comment utiliser les Big Data qui doivent être un levier technologique pour accompagner les enjeux métiers et non l'inverse
  • Comprendre les acteurs du Big Data et leur positionnement
  • Quelle vision à 3 ans
  • Propriété de la donnée, environnement juridique du traitement, sécurité
  • La nécessité de la gouvernance des données
  • Qu'est-ce qu'un CDO ?

Aspects juridiques et éthiques : quelles données pour quels usages ?

  • Données objectives
  • Données à caractère personnel
  • Quelle gestion des données personnelles ? (donnée se rapportant à une personne physique, qui peut être identifiée quel que soit le moyen utilisé)
  • Quels Impact sur la vie privée
  • Surveillance et sanction de la CNIL
  • Déclaration préalable
  • Exemples
  • Présentation du socle (la finalité du traitement) et de 4 conditions
  • Finalité explicite et légitime
  • Loyauté dans la mise en œuvre du traitement
  • Données pertinentes
  • Durée de conservation non excessive
  • Sécurité

Impact des choix technologiques en matière de développement Big Data

  • Les nouveaux frameworks Big Data
  • Prendre en compte l'architecture de donnée distribuée
  • Prendre en compte les traitements distribués
  • L'importance de Java au sein des architectures Hadoop
  • Le management des données

L'environnement : Apache Hadoop

  • Découvrir Hortonworks la distribution 100% Apache Hadoop
  • Hortonworks et l'ODPi (Open Data Platform)
  • Fondamentaux d'Hadoop
  • L'intérêt d'Hadoop
  • Vue globale d'Hadoop
  • HDFS
  • MapReduce
  • YARN
  • L'écosystème Hadoop

Le développement : MapReduce

  • Introduction à PIG
  • Fondamentaux de PIG
  • Pourquoi utiliser Hive ?
  • Comparer PIG aux ETL traditionnelles
  • Cas d'utilisation de PIG
  • Introduction à Hive
  • Introduction à Impala et Hive
  • Pourquoi utiliser Impala et Hive ?
  • Comparer Hive aux Bases de données traditionnelles
  • Cas d'utilisation de Hive
  • Modélisation et gestion des données avec Impala et Hive
  • Aperçu sur le stockage de données
  • Création de bases de données et de tableaux
  • Remplir les données dans les tableaux
  • HCatalog
  • Mettre en mémoire-cache les Métadonnées Impala
  • Les formats de données
  • Sélectionner un format de fichier
  • Support d'outils Hadoop pour les formats de fichier
  • Schémas Avro
  • Utiliser Avro avec Hive et Sqoop
  • Evolution du Schéma Avro
  • Compression
  • Capturer les données avec Apache Flume
  • Qu'est-ce qu'Apache Flume ?
  • Architecture basique de Flume
  • Les sources de Flume
  • Flume Sinks
  • Les réseaux de Flume
  • La configuration de Flume
  • Les bases de Spark
  • Qu'est-ce qu'Apache Spark ?
  • Utiliser « Spark Shell »
  • RDDs (Resilient Distributed Datasets)
  • La programmation fonctionnelle dans Spark
  • Travailler avec des « RDD » dans Spark
  • Ecrire et déployer des applications Spark
  • La programmation parallèle avec Spark
  • Aperçu de Shark (Spark SQL)

Langages de programmation : Python, R, …

  • Python
  • Syntaxe basique
  • Structures procédurales
  • Bibliothèques essentielles
  • La programmation orientée objet
  • Le langage R
  • Variables et types de bases (numeric, character, list, …)
  • Tests
  • Boucles
  • Fonctions
  • Fusion de données
  • Traitement des valeurs manquantes
  • Représentations graphiques des données
  • Pie charts et graphiques à double échelle

Le deep machine learning

  • Approche fréquentiste
  • Apprentissage statistique
  • Conditionnement des données et réduction de dimension
  • Machines à vecteurs supports (SVM) et méthodes à noyaux
  • Quantification Vectorielle
  • Réseaux de neurones et deep learning
  • Ensemble learning et arbres de décision
  • Bandits

La data visualisation

Connaître les modes de représentation des données

  • Déterminer le graphe le plus pertinent selon le message à délivrer
  • Concevoir et expérimenter des concepts
  • Justifier ses analyses et choix graphiques
  • Savoir sélectionner les outils de datavisualisation à positionner sur les plateformes Big Data

Etudes de cas

  • Mise en place d'une architecture Big Data orientée Data Lake chez Hermès et mise en place d'une solution de Datavizualisation pour la gestion de la console de Data Stewardship.

Sessions

Filtrer les résultats

36 résultats

Modalités pédagogiques
Formation synchrone se déroulant avec la présence physique du (des) formateur(s) et du (des) apprenant(s) réunis dans un même lieu de formation.
Formation combinant des séquences en présentiel et des séquences à distance synchrones ou asynchrones.
Formation à distance, asynchrone, s’appuyant sur une plateforme d’apprentissage, pouvant être complétée par d’autres modalités de formation à distance (visio-conférence…)
Formation à distance, synchrone, s’appuyant sur un dispositif de visio-conférence. La classe virtuelle recrée à distance les conditions d’une formation en salle traditionnelle.
Type de formation
La formation en Inter est dispensée pour un groupe de salariés d’entreprises différentes.
La formation en Intra est dispensée pour un groupe de salariés d’une seule et même entreprise.
Options
Ces sessions ne peuvent être ni annulées ni reportées par l’organisme de formation.

0 résultat