Aller au contenu principal
Afficher le fil d'ariane

01. Concevoir et implémenter une solution d’IA pour les professionnels Data

  • Préparer des données nécessaires à un projet d’intelligence artificielle 
  • Développer et mettre en œuvre une solution d’intelligence artificielle 
  • Maintenir et améliorer une solution d’intelligence artificielle 

Public

Professionnels de l’informatique et du traitement des données (data engineer, data analyst, business data analyst et architecte data).

Pré-requis

-    Exercer un emploi comportant des activités orientées vers la création d’infrastructures, de logiciels, vers le traitement et l’analyse de données ou encore vers la maintenance des systèmes ;
-    Des connaissances en mathématiques et statistiques, en particulier dans l’exploitation de données (statistiques descriptives, probabilités, statistiques inférentielles, analyse exploratoire des données, modélisation statistique) ;
-    Justifier d’une expérience en programmation (1er niveau de maîtrise des langages de programmation, connaissances algorithmes et structures de données, architecture logicielle, systèmes d’exploitation).I2

Certification

Concevoir et implémenter une solution d’IA

Objectifs pédagogiques

Mesure et suivi de la performance 
  • Identifier, définir et mesurer les indicateurs de performance dès la conception de la solution
  • Analyser et ré-évaluer de manière périodique les indicateurs de performance
  • Maitriser les techniques de versionnage et de mise en production des modèles
  • Maitriser les techniques de Mlops et frameworks associés (MLFlow, …), conteneurisation (docker) et les articuler avec les techniques de Devops
  • Développer des tableaux de bord pour le suivi des performances et les métriques associées
  • Intégrer les retours utilisateurs et les limites d’utilisation (retour du contrôle vers un humain)

Les menaces 
  • Connaître les menaces qui pèsent sur l’élaboration d’une solution d’IA et comprendre l’état de l’art des mécanismes d’atténuation (adversarial example) et évaluer les risques résiduels 

Les connaissances générales liées aux modèles d’IA   
  • Comprendre les modèles d’IA et leurs champs d’application
  • Maîtriser les outils (Tensorflow, Keras, ...) pour faire de L’IA
  • Compréhension, prise de recul par rapport des cas d’usage
  • Intégrer les contraintes opérationnelles (accès aux données, SI, etc…)
  • Sensibilisation Écoconception (ex-gestion de flux de données vertueuse, code optimisé, …)
  • Apprendre les bonnes pratiques pour gérer un projet d'Intelligence artificielle
  • Maîtriser les bases et les bibliothèques de Python, et leur application à l’intelligence artificielle

La modélisation IA
  • Connaissance des différents modèles d’IA et de leurs spécificités (ex. contraintes liées aux différentes formes d’apprentissage
  • Apprendre à développer en Python des modèles de IA (prédiction, classification, réseaux de neurones)
  • Maitriser les environnements de développement de l’IA (Notebook Jupyter, …) 

Les méthodes d’apprentissage  
  • Apprendre à Optimiser le code & automatiser des tâches
  • Optimiser les méthodes d’apprentissage au regard du jeu de données
  • Elargir les connaissances sur les bibliothèques du marché. 

Industrialisation et architecture  
  • Bonnes pratiques Mlops, versionning, dév. Continu, CI/CD…
  • Savoir « exposer » l’IA (API, web service, events, etc)
  • Développement d’IHM basiques pour première retitution MVP (Tkinter, Flask, Django, …)
  • Avoir une bonne connaissance des principaux éléments d’architectures impliquées pour l’IA
  • Être capable de challenger les propositions techniques sous les contraintes performance, économique, écologique, …) 
  • Apprendre à utiliser des outils de monitoring d’entrainement de type Tensorboard
  • Apprendre à utiliser les bibliothèques d’optimisation de modèles de type Optuna
  • Avoir des notions d’architecture d’un système d’information intégrant de L’IA

Sessions

Filtrer les résultats
Modalités pédagogiques
Formation synchrone se déroulant avec la présence physique du (des) formateur(s) et du (des) apprenant(s) réunis dans un même lieu de formation.
Formation combinant des séquences en présentiel et des séquences à distance synchrones ou asynchrones.
Formation à distance, asynchrone, s’appuyant sur une plateforme d’apprentissage, pouvant être complétée par d’autres modalités de formation à distance (visio-conférence…)
Formation à distance, synchrone, s’appuyant sur un dispositif de visio-conférence. La classe virtuelle recrée à distance les conditions d’une formation en salle traditionnelle.
Type de formation
La formation en Inter est dispensée pour un groupe de salariés d’entreprises différentes.
La formation en Intra est dispensée pour un groupe de salariés d’une seule et même entreprise.
Options
Les compétences professionnelles visées par la formation sont validées via un test permettant d’obtenir une certification officielle.
Ces sessions ne peuvent être ni annulées ni reportées par l’organisme de formation.
Organisme