02. Concevoir et implémenter une solution d’IA pour les Professionnels IT
- Préparer des données nécessaires à un projet d’intelligence artificielle
- Développer et mettre en œuvre une solution d’intelligence artificielle
- Maintenir et améliorer une solution d’intelligence artificielle
Public
Professionnels de l’IT dont :
- le cœur de métier n’est pas initialement l’exploitation des données,
- l’expertise et les finalités se concentrent sur la gestion et l'optimisation des systèmes et de l'infrastructure informatiques et non sur l'exploitation des données pour prendre des décisions (développeur informatique, spécialiste BDD, consultant AT, spécialiste infrastructure, spécialiste systèmes, réseaux et sécurité, intégrateur logiciel...)
Pré-requis
- Exercer un emploi comportant des activités orientées vers la création d’infrastructures, de logiciels, vers le traitement et l’analyse de données ou encore vers la maintenance des systèmes ;
- Des connaissances en mathématiques et statistiques, en particulier dans l’exploitation de données (statistiques descriptives, probabilités, statistiques inférentielles, analyse exploratoire des données, modélisation statistique) ;
- Justifier d’une expérience en programmation (1er niveau de maîtrise des langages de programmation, connaissances algorithmes et structures de données, architecture logicielle, systèmes d’exploitation)
- Des connaissances en mathématiques et statistiques, en particulier dans l’exploitation de données (statistiques descriptives, probabilités, statistiques inférentielles, analyse exploratoire des données, modélisation statistique) ;
- Justifier d’une expérience en programmation (1er niveau de maîtrise des langages de programmation, connaissances algorithmes et structures de données, architecture logicielle, systèmes d’exploitation)
Certification
Concevoir et implémenter une solution d’IA
Objectifs pédagogiques
La documentation
Les techniques de traitement de données
La préparation des données
Adapter la solution selon les enjeux sociétaux et les besoins clients
Mesure et suivi de la performance
Les menaces
Les connaissances générales liées aux modèles d’IA
La modélisation IA
Les méthodes d’apprentissage
Industrialisation et architecture
- Documenter les jeux de données (datasheet, documentation technique)
- Documenter le flux de traitement des données (donnée source jusqu’à l’exploitation, chaine d’approvisionnement des données)
- Documenter le cycle de vie de la donnée
Les techniques de traitement de données
- Prendre en compte les techniques de génération de données (données synthétiques, confidentialité différentielle, etc.)
- Maitriser les techniques d’augmentation de données
La préparation des données
- Evaluer la qualité et la pertinence des données (visualisation, indicateurs (de cohérence), distribution, etc.)
- Identifier les biais les plus courants et leurs atténuations et évaluer les risques résiduels
- Intégrer et maitriser les méthodes de base de data-cleaning (renseigner données manquantes, identifier les données aberrantes, etc.)
Adapter la solution selon les enjeux sociétaux et les besoins clients
- Comprendre les impacts de la solution par rapport au destinataire direct et indirect
- Connaître, identifier et intégrer les différents risques éthiques et sociétaux associés à l’utilisation de l’IA en fonction du cas d’usage
- Connaître la réglementation en lien avec la confidentialité et utilisation des données et de l’IA pour les usages sensibles
- Connaitre les besoins métiers et comprendre les besoins exprimés
- Comprendre le cas d’usage en fonction des besoins métiers
Mesure et suivi de la performance
- Identifier et corriger les dérives du modèle (apprentissage en continu avec des dérives liées aux nouvelles données)
- Identifier, définir et mesurer les indicateurs de performance dès la conception de la solution
- Analyser et ré-évaluer de manière périodique les indicateurs de performance
- Choisir et documenter le modèle de stockage adapté en fonction du cas d’usage et des données sources
- Maitriser les techniques de versionnage et de mise en production des modèles
- Maitriser les techniques de Mlops et frameworks associés (MLFlow, …), conteneurisation (docker) et les articuler avec les techniques de Devops
- Développer des tableaux de bord pour le suivi des performances et les métriques associées
- Intégrer les retours utilisateurs et les limites d’utilisation (retour du contrôle vers un humain)
Les menaces
- Connaître les menaces qui pèsent sur l’élaboration d’une solution d’IA et comprendre l’état de l’art des mécanismes d’atténuation (adversarial example) et évaluer les risques résiduels
Les connaissances générales liées aux modèles d’IA
- Comprendre les modèles d’IA et leurs champs d’application
- Maîtriser les outils (Tensorflow, Keras, ...) pour faire de L’IA
- Compréhension, prise de recul par rapport des cas d’usage
- Intégrer les contraintes opérationnelles (accès aux données, SI, etc…)
- Sensibilisation Écoconception (ex-gestion de flux de données vertueuse, code optimisé, …)
- Apprendre les bonnes pratiques pour gérer un projet d'Intelligence artificielle
- Maîtriser les bases et les bibliothèques de Python, et leur application à l’intelligence artificielle
La modélisation IA
- Connaissance des différents modèles d’IA et de leurs spécificités (ex. contraintes liées aux différentes formes d’apprentissage
- Apprendre à développer en Python des modèles de IA (prédiction, classification, réseaux de neurones)
- Maitriser les environnements de développement de l’IA (Notebook Jupyter, …)
Les méthodes d’apprentissage
- Apprendre à Optimiser le code & automatiser des tâches
- Optimiser les méthodes d’apprentissage au regard du jeu de données
- Elargir les connaissances sur les bibliothèques du marché.
Industrialisation et architecture
- Bonnes pratiques Mlops, versionning, dév. Continu, CI/CD… Savoir « exposer » l’IA (API, web service, events, etc)
- Développement d’IHM basiques pour première retitution MVP (Tkinter, Flask, Django, …)
- Avoir une bonne connaissance des principaux éléments d’architectures impliquées pour l’IA
- Être capable de challenger les propositions techniques sous les contraintes performance, économique, écologique, …)
- Apprendre à utiliser des outils de monitoring d’entrainement de type Tensorboard
- Apprendre à utiliser les bibliothèques d’optimisation de modèles de type Optuna
- Avoir des notions d’architecture d’un système d’information intégrant de L’IA